Progress Report: CCSF Lifelines Council Interdependency Study

Lifelines Council Meeting #8

April 25, 2012

Laurie Johnson PhD AICP Consulting | Research

Lifelines Council's Objectives

- Develop and improve collaboration in the City and across the region by regularly convening a group of Executive Officers and Senior-level operational deputies of local and regional lifelines providers
- Understand inter-system dependencies to enhance planning, restoration and reconstruction.
- Share information about recovery plans, projects and priorities.
- Establish coordination processes for lifeline restoration and recovery following a major disaster event.

Interdependency Study Goals (Near-term 2 – 5 years)

- Build a workable understanding of system interdependencies, and consequences of existing conditions ,to help expedite response and restoration planning among agencies
- Identify key assets and restoration priorities/schemes to prioritize post-disaster restoration and reconstruction activities for the city, and ultimately the region
- Develop a collective set of lifelines performance expectations under current conditions

Interdependency Study Desired Outcomes

- Development of a more detailed and comprehensive scenario of lifeline system impacts and restoration assumptions, for agencies to use in emergency response planning, table-top exercises
- Development of a economic loss model that reflects lifeline system impacts and restoration assumptions
- Identify key critical nodes and chokepoints in system interdependencies for continued work on inter-agency coordination and reducing lifeline interdependencies between sectors and systems

Interdependency Study Desired Outcomes

- Identify priorities for public funding (e.g. city bonds, infrastructure financing districts) necessary to underwrite or encourage correcting choke points that affect multiple systems
- Identify priorities for legislative and regulatory changes, and barriers that need to be overcoming for utilities to improve lifeline post-disaster performance and restoration
- Obtain credentialing for personnel to work on system restoration and recovery
- Launch a regional lifelines interdependency study
- Publish updated expectations so business and community partners know results of gap analysis and understand how their dependencies will be affected.

Lifelines Council Interdependency Study Approach

(modeled after Chang et al (Vancouver) and Porter et al (Southern California))

Laurie Johnson PhD AICP Consulting | Research

Interdependency Study Progress to Date and Next Steps

- $\sqrt{}$ Launch study with presentation on interdependency issues and study approaches (April 2011)
- $\sqrt{}$ Council member working group and other partners/advisors to design and advise on the study (May July 2011)
- $\sqrt{}$ Develop system strawman methodology approach (vetted in discussion groups on August 11)
- $\sqrt{}$ Scenario selection and discussion guide development (Sept Oct)
- ✓ Pilot testing of scenario and finalize discussion guide (Nov 2011 –Jan 2012)
- □ Infrastructure operator and panel discussions (January August 2012)
- Synthesize discussions into integrated scenario and interdependency insights; operator review and approval (September – October 2012)

M7.9 San Andreas Earthquake Scenario affecting19-counties in Northern California

(EERI, Charles A. Kircher et al. 2006)

Time=75.0 s

Shaking Intensity

Laurie Johnson PhD AICP Consulting | Research

			19-County Study Region		
	Study Region			Population	10,252,240
		Exposuro		Houdeholds	3,655,086
County	Population	(\$ in millions)	Mendocino	Building Cos	st (\$ billions)
Alameda	1 443 741	(\$ III IIIIIIOIIS) \$155 700		Residential	\$782
Contra Costa	948.816	\$102,807	Lake	Commercial	\$204
Lake	58.309	\$4.796	Napa	All Buildings	\$1,055
Marin	247,289	\$36,050	s s	olano	Nevada
Mendocino	86,265	\$7,285	Yolo		
Merced	210,554	\$12,901	Sonoma		
Monterey	401,762	\$33,773	Marin	Contra Costa	
Napa	124,279	\$14,579	San Francisco	San Joaquin	
Sacramento	1,223,499	\$110,562	San Mateo	Stainslaus	
San Benito	53,234	\$4,136	Santa Clara	Alameda	
San Francisco	776,733	\$100,179	Santa Cruz	Merced	
San Joaquin	563,598	\$42,756			
San Mateo	707,161	\$84,301	Monterey	San Ber	nito
Santa Clara	1,682,585	\$183,312		<u></u>	
Santa Cruz	255,602	\$28,383		<u>}_</u>	California
Solano	394,542	\$34,820		and and a	
Sonoma	458,614	\$50,858			~
Stanislaus	446,997	\$33,828	0 100	200 。 🔊	
Yolo	168,660	\$14,479	miles	V	

106 V

8. 4

100th Anniversary Earthquake Conferenc Commemorating the 1906 San Francisco Earthquake April 18-22, 2006 | THE MOSCONE CENTER

Scenario Earthquake Ground Motions

-Mr

06

1906 MMI Ground Motions

- Best available estimate of how the ground shook in 1906
- MMI ShakeMaps (USGS)
 - Boatwright, Bundock and Seelins, 2006, "Using Modified Mercalli Intensities to Estimate Acceleration Response Spectra" (EERI, Earthquake Spectra)

1906 SAN FRANCISCO EARTHQUAKE

Scenario Earthquake Ground Motions

M7.9 Ground Motions

- Best estimate of how the ground will shake next time
- Same methods as those of Seismic Codes (USGS)
 - Frankel et al., 2002,
 "Documentation for the 2002
 Update of the national Seismic
 Hazards Maps, (USGS OFR 02-420)
- High-Resolution Soil (Site Class) Map
 - California Geological Survey

1906 SAN FRANCISCO EARTHQUAKE 11 18-22, 2006 | THE MOSCONE CENTER

Summary of Building Damage and Loss Results Due to Ground Shaking and Ground Failure – Total Study Region

Damage or Loss Parameter	Population or	Scenario Earthquake			
Damage of LOSS Parameter	Exposure	1906 MMI	M7.9		
Number of Severely Damaged Buildings					
Residential Buildings	2,800,000	80,000	120,000		
Commercial Buildings	70,000	7,000	10,000		
Social Losses due to Building Damage					
Displaced Households	3,700,000	170,000	250,000		
Serious Injuries - Nighttime	10,300,000	4,000	8,000		
Serious Injuries - Daytime		6,000	13,000		
Immediate Deaths - Nighttime	10,300,000	800	1,800		
Immediate Deaths - Daytime		1,600	3,400		
Direct Economic Losses due to Building Damage (Dollars in Billions)					
Structural System	\$300	\$15	\$20		
Nonstructural Systems	\$800	\$57	\$75		
Contents and Inventory	\$500	\$14	\$17		
Business Interruption (BI)	NA	\$8	\$11		
Total Building and Contents	\$1,500	> \$90	> \$120		

·06

Commercial Building Damage (M7.9 Scenario)

 Over 10,000 commercial buildings likely to be closed or to have restricted use until repairs are made due to structural damage

Commercial Buildings with at least Extensive Structural Damage Number Fraction County Alameda 1,307 12% San Francisco 3.560 37% San Mateo 2,054 41% Santa Clara 2,059 19% **Other Counties** 1,271 7% 10,251 **All Counties** 15%

100th Anniversary Earthquake Conference Commemorating the 1906 San Francisco Earthquake April 18-22, 2006 | THE MOSCONE CENTER

Residential Impacts (San Francisco)

- 15,000 24,000 single family dwellings with extensive or complete damage (12% to 20% of 125,000 total)
- 7,000 11,000 other residential buildings with extensive or complete damage (19% to 30% of 37,000 total)
- 60,000 88,000 households initially displaced (18% to 27% of ~330K)
- 14,000 22,000 people seeking shelter (out of ~800K)

100th Anniversary Earthquake Conference Commemorating the

1906 SAN FRANCISCO EARTHQUAKE PRIL 18-22, 2006 | THE MOSCONE CENTER

Fatalities (M7.9 Scenario)

3,400 Daytime Fatalities 1/1,000 Fatality rate
 (San Francisco County)

County	Daytime Deaths		
County	Number	Rate ¹	
By County			
Alameda	378	26	
San Francisco	823	106	
San Mateo	1,013	143	
Santa Clara	802	48	
All Others	394	7	
By Building Type			
Typical	2,232	23	
"Bad" Types ²	1,179	329	
 Deaths per 100,000 of population Soft-story wood, un-reinforced masonry and non-ductile concrete 			

• **1,800 Nighttime Fatalities** One-half due collapse of "bad" building types

Occurrentes	Nighttime Deaths			
County	Number	Rate ¹		
By County				
Alameda	269	19		
San Francisco	574	74		
San Mateo	370	52		
Santa Clara	361	21		
All Other	271	5		
By Building Type				
Typical	892	9		
"Bad" Types ²	954	266		
1. Deaths per 100,000 of population				
2. Soft-story wood, un-reinforced				
masonry and non-ductile concrete				

Housing Units Usable and Unusable after a M7.2 San Andreas Earthquake (SPUR/CAPSS)

Laurie Johnson PhD AICP Consulting | Research

Fire Following (M7.9 Scenario)

- Fire Following Concepts
 - Ignitions
 - Spread
 - Suppression
- 300 600 fire ignitions estimated
 - 30 60 San Mateo
- Fire Likelihood Map
 - Areas with older, denser buildings and stronger ground motions

COMMEMORATING THE

1906 SAN FRANCISCO EARTHQUAKE APRIL 18-22, 2006 | THE MOSCONE CENTER

Total Direct Economic Loss

Direct Economic Building Loss due Ground Shaking/Failure (M7.9)		
County	Loss Ratio	
Alameda	7.4%	
San Francisco	25.9%	
San Mateo	24.6%	
Santa Clara	11.9%	
Other Counties	2.7%	
All 19 Counties	9.0%	

- Fire Plus 5% 15%
- Lifelines Plus 5% 15%
- Total Loss: <u>\$150 billion</u>

COMMEMORATING THE

1906 SAN FRANCISCO EARTHQUAKE APRIL 18-22, 2006 | THE MOSCONE CENTER

- Mr

Roads (Regional)

Redundancy ensures regional functionality, but the level of service will be significantly gan impacted. Breed, Jr Fwy

Primary regional access routes from the south – El Camino, 101 and 280.

Image © 2012 TerraMetrics © 2012 Google Data LDEO-Columbia, NSF; NOAA 780

calitornia Delta Hwy

242

880

Central Expy

Sinclas

Laurie Johnson PhD AICP Consulting | Research

Google earth

Roads (Regional)

- N-S: 101-Doyle Drive, 280-Crystal Springs damage. Other damage along 101, 280, El Camino Real, and Highway 1.
- E-W: Bay Bridge damage. Retrofit bridges will not collapse but may not be functional.
- CalTrans and CHP staff will provide damage/ functionality reports; 12 – 18 hours to get picture
- Structures maintenance group does inspections. Shakecast used to prioritize inspections.

Roads (Regional) - Restoration

- System needs will change after disaster, which will affect restoration (i.e. alternate work schedules, relocations)
- Restoration initially will come organically. Start off doing a little bit everywhere. Actions determined by what happens locally.
- Major restoration priorities and communications/ decisions will come from State/region EOC.
- Restoration metrics will vary depending upon priorities, resources, and repair process:
 - "Maze" fire 26 days; 880-Cypress reconstruction 10 years
 - Have multi-agency regional plans and are working on regional incident mobility plan with MTC.
 - "If we are all working and cooperating, then we will likely get support."

Roads (Regional) - Interdependencies

- Regional service organization helps ensure distributed labor, equipment, and materials (particularly near construction areas). Fuel facilities throughout region (state contract)
- EOC/Caltrans communication center seismic retrofitted. Ensure water and power (UPS, generator) for 72 hours. Worst case: use CHP communications center (Vallejo)
- Upstream dependencies telecommunications (cell phones and 800MHz radio) and power, fuel, and human needs for crews (water, food, shelter)
- Downstream dependencies All lifelines needing regional access (labor and supplies)
 - federal staging areas (Travis, Livermore)
 - checkpoints managed by local police or CHP

Water - Transmission

- 350 MGD* systems peak capacity; 265
 MGD current delivery;
 218 MGD* from Hetch Hetchy, plus
 local reservoirs
 - Halfway through \$4.6 bn Water Seismic Improvement Program to be completed in 2016; ~\$1 bn in San Francisco
 - High reliability of San Francisco 5-line transmission system already. Performance standards:
 - 3 of 5 major "turnouts" (70%) in San
 Francisco within 24 hours
 - 100% in 30 days
 - *MGD million gallons per day

- Distribution system (1,200 miles) generally reliability but portions will fail in major seismic event:
 - System largely gravity flow (not heavy power dependence)
 - Ductal iron pipeline replacement program underway
 - Remote distribution monitoring that will be upgraded; rely on valve shutoff
- 3 to 4 days of storage already in SF
- Emergency water program involving spigots at reservoirs, water trucks, and bagging

Water - Distribution

Water – Restoration

- SFPUC reports into SF EOC; also have their own DOC
- SF Level of Service will need to be determined at time of disaster
- SF restoration priorities set by Mayor and incident commander
 - Transmission system repairs will have some priority
 - Distribution system repairs will consider critical facilities, largest population areas, and doable repairs. Currently replacing 9 miles of pipeline per year, ramping up to 15 miles by 2014.
- Regional restoration priorities (if choices necessary) would come through State/region EOC

Water

Uncertain reliability of distribution system; portions will be damaged.

Deliver water to 3 of 5 of SF turnouts (70%) within 24 hours of a disaster; 100% in 30 days

High reliability of transmission system.

Image © 2012 TerraMetrics © 2012 Google Data LDEO-Columbia, NSF; NOAA

Laurie Johnson PhD AICP Consulting | Research

Google earth

Water - Interdependencies

- Regional nature of SFPUC provides high level of independence for fuel (across 7 counties), chemicals (3 to 4 days), communications (SCADA, cellular), heavy equipment, and labor
 - Draft MOU with 4 Bay Area utilities; EBMUD --> LA DWP; state water providers
 - Use SCADA system and staff inspections
- Gravity flow of system limits dependence on electricity for pumping
- Key upstream dependencies fuel, telecommunications
- Key downstream dependencies fire department (working on MOU), underground utilities that might be flooded by breaks, critical facilities (hospitals already connected to 2 or 3 of the 8 pressure zones), financial services and major industries

Electricity – Transmission and Distribution

- 3 electric transmission lines come up the peninsula, a "DC line" operated by 3rd party crosses SF Bay
- Critical substation could experience significant damage, resulting loss of all 3 transmission lines
- DC line can't provide independent service
- SF has no electric generation capacity
- Much of SF distribution system is underground, subject to significant damage
- San Mateo and Alameda County will also have significant damage

Electricity – Restoration

- PG&E headquarters expected to suffer only minor damage; relocation plan will move critical businesses out of SF if necessary
- PG&E will have regional (State-directed) and local restoration priorities (SF EOC):
 - Damaged underground distribution system will be challenging to repair
 - Electric load must be balanced during restoration to avoid system damage; unpredictable outages likely until sufficient capacity restored
 - Restoration across city will depend upon damage locations/concentrations, population concentrations (evacuated areas will likely be delayed), seasonality, and ability to expedite services to critical facilities

Electricity

Much of SF distribution system is underground, subject to significant damage, and more challenging to repair

SF has no electric generation capacity

Critical substation could experience significant damage, resulting loss of all 3 transmission lines

Transmission lines up the peninsula are pretty robust. DC line from East Bay can't provide independent service

Image © 2012 TerraMetrics © 2012 Google Data LDEO-Columbia, NSF, NOAA

Laurie Johnson PhD AICP Consulting | Research

Google earth

Electricity – Interdependencies

- Mutual aid agreements in place
- Upstream dependencies road clearance and access for heavy equipment; potential inundation of any underground facilities from ruptured water or sewage lines; fuel for both generators and vehicles; communications; human needs for crews (water, food, shelter)
- Downstream dependencies most lifelines dependent on electricity; emergency shelters and other critical facilities

Gas –

Transmission and Distribution

- 3 gas transmission lines come up the peninsula, and meet at a single point in San Francisco before citywide distribution
- SF gas load can be managed with only 2 of 3 lines; loss of 2 lines would result in pressure loss and potential curtailment of gas service throughout SF
- SF gas distribution lines are underground but more flexible plastic. SF gas leaks controlled through 2,200 valves that can be shut-off manually, where and when needed
- San Mateo County will also have significant damage

Gas – Restoration

- PG&E will have regional (State-directed) and local restoration priorities (SF EOC):
 - 2,200 valves across city will be shut-off, where and when needed, to isolate gas leaks in underground distribution system
 - Restoration will require entry to every property/unit to check for gas leaks and relight gas-fired equipment
 - In addition to city priorities, opportunities to quickly restore service in minimally damaged and safe areas will be taken when possible.
 Restoration across city will depend upon damage locations/concentrations, population concentrations (evacuated areas will likely be delayed), seasonality, and ability to expedite services to critical facilities

Gas – Interdependencies

- Mutual aid agreements in place
- Upstream dependencies road clearance and access for heavy equipment; potential inundation of any underground facilities from ruptured water or sewage lines; fuel for both generators and vehicles; communications; human needs for crews (water, food, shelter)
- Downstream dependencies emergency shelters and other critical facilities heavily dependent upon gas

SF gas distribution system is underground, but in flexible plastic pipe. If transmission lost, system restoration will take months

Gas

3 transmission lines up the peninsula meet at single point. If 2 lose transmission, then resulting pressure loss could curtail service citywide

Image © 2012 TerraMetrics © 2012 Google Data LDEO-Columbia, NSF, NOAA

Laurie Johnson PhD AICP Consulting | Research

Google earth

Electricity and Gas Restoration (Progress Report ; April 2012)

Laurie Johnson PhD AICP Consulting | Research

Issues/Needs (Progress Report ; April 2012)

- Regional (multi-city, multi-operator) exercises:
 - Interdependency between different operators (Roads)
 - Mass evacuation (Roads)
 - Regional restoration policy discussions (Water)
 - Valve shut-off exercise (Water)
- Communications options/testing:
 - No radio and use CalEMA "cloud" (Roads)
 - Minus cell phones and internet (Water)
- Pre-planning of service requirements for essential facilities such as shelters (Electricity/Gas)

Issues/Needs (Progress Report ; April 2012)

- Creation of new transmission routes that don't follow existing routes, such as an electric link between Embarcadero to Portrero substations (Electricity/Gas)
- Develop pre-designated lifelines routes for operators (Roads)
- Develop pre-disaster credentialing system for access that includes non-utility contractors/mutual aid providers (Electricity/Gas)
- Develop emergency medical service for lifelines restoration personnel (Electricity/Gas)
- Customer (resident, business) level scenarios of damage, restoration schemes and decision-making (Water)

Lifelines Interdependencies – Vancouver Study

Laurie Johnson PhD AICP Consulting | Research

Lifeline Interdependencies in San Francisco (Progress Report ; April 2012)

Potential Interactions among San Francisco Lifelines (Progress Report ; April 2012)

(Yao et al 2005, based on Kameda, Nojima, 1992; Scawthorn 1993; and others)

- **Type A Functional disaster propagation,** due to failure of interdependence among lifelines
 - Roads (regional) and electricity
- **Type B Collocation interaction,** physical disaster propagation among lifeline systems
 - Underground water failures impacting underground electricity and gas
- **Type C Substitute interaction,** influences on alternative systems
 - Electrical and gas
- **Type D Restoration interaction**, various hindrances in the restoration stage
 - Underground water failures impacting underground electricity and gas
- **Type E Cascade interaction,** increasing impacts on a lifeline due to initial inadequacies
 - Water impacting fire-fighting
- **Type F General interaction**, between internal components of a lifeline system
 - Electrical substation failure, Water turnout failures

Details on Next Steps

- Infrastructure operator and panel discussions:
 - ✓ PG&E (electric and gas) (Nov 2011)
 - ✓ Caltrans (regional roads) (Nov 2011)
 - ✓ SFPUC (water) interdependency discussion (April 2012)
 - SFPUC (wastewater) (May/June 2012)
 - SFDPW (city roads and debris (include Recology)) (May/June 2012)
 - BART and MUNI (June 2012)
 - Telecommunications operators panel (July 2012)
 - Port/airport operators (include WRDA) panel (July 2012)
 - Fuel and refineries panel (August 2012)
- Develop integrated scenario and interdependency insights (September 2012)
- Operator review and approval (October 2012)